2. Polynomials
hard

બહુપદી $x^{3}+3 x^{2}+3 x+1$ નો $x+\pi$ ભાજક વડે ભાગાકાર કરો અને શેષ શોધો.

A

$-\pi^{3}+3 \pi^{2}-3 \pi+1$

B

$\pi^{3}-3 \pi^{2}-3 \pi-1$

C

$-\pi^{3}+3 \pi^{2}+3 \pi-1$

D

$\pi^{3}-3 \pi^{2}+3 \pi-1$

Solution

$x +\pi $ નું શૂન્ય $-\pi$ છે.                             $[\because x+\pi=0 \,\,\,\therefore x=-\pi]$

તેથી જો $p(x)=x^{3}+3 x^{2}+3 x+1$ માં $ x=-\pi$ મૂકીએ તો,

$p(-\pi) =(-\pi)^{3}+3(-\pi)^{2}+3(-\pi)+1$

$=(-\pi)^{3}+3\left(\pi^{2}\right)+3(-\pi)+1$

$=-\pi^{3}+3 \pi^{2}-3 \pi+1$

આમ, $x^{3}+3 x^{2}+3 x+1$ ની શેષ $-\pi^{3}+3 \pi^{2}-3 \pi+1$ મળે છે.

Standard 9
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.